ZJU_CVs Blog

CV Learning and Paper Reading.

PAY LESS ATTENTION WITH LIGHTWEIGHT AND DYNAMIC CONVOLUTIONS

1. Introduction lightweight convolutons 轻量级卷积利用深度可分离卷积为原型,通过在通道维度上的共享参数大大减少参数量,降低算法的复杂度(如下图,以$3\times 3$卷积核为例),其思想在于将通道和区域分开考虑 传统卷积参数:$k^2 \times d_{in} ...

CVPR 2020

论文合集

关于往年CV顶会论文(如CVPR 2019、ICCV 2019、ECCV 2018)以及其他优质CV论文和大盘点,详见: https://github.com/amusi/daily-paper-computer-vision CNN 图像分类 目标检测 3D目标检测 视频目标检测 目标跟踪 语义分割 实例分割 全景分割 视频目标分割 超像素分...

Set Transformer

A Framework for Attention-based Permutation-Invariant Neural Networks

1. Introduction NLP的输入存在有序性,但是还有很多机器学习任务的输入与顺序无关(set-strcture data),如: multiple instance learning 3D shape recognition sequence ordering meta-learning ...

SMASH

one-shot model architecture search through hypernetworks

1. Introduction 为深度神经网络设计架构需要专业知识和大量计算时间(expert knowledge and substantial computation time) 本文通过训练一个辅助模型(HyperNet),去训练搜索过程中的候选模型,这个超网络动态地生成具有可变结构的主模型的权值(generate the weights o f a main mod...

SOLO Segmenting Objects by Locations

SOLO分割模型

1. Introduction 实例分割主要有两大类别: 自上而下:先检测后分割(依赖目标检测的准确率) 自下而上:为每个像素学习一个嵌入向量,然后通过聚类、度量学习等方法区分不同的实例(依赖每个像素的嵌入学习和分组后处理) 创新点:利用中心点和大小两个信息区别实例 2. SOLOv1 SOLO: Segmenting Objects b...

Awesome Self-Supervised Learning

Why Self-Supervised? Self-Supervised Learning has become an exciting direction in AI community. Jitendra Malik: “Supervision is the opium of the AI researcher” Alyosha Efros: “The AI revolutio...

Awesome Image Classification

Background I believe image classification is a great start point before diving into other computer vision fields, espacially for begginers who know nothing about deep learning. When I started to l...

Awesome Few-shot Learning

Meta-learning Model optimzation Unsupervised Meta-Learning for Few-Shot Image and Video Classification [Khodadadeh et al. 2018] A Simple Neural Attentive Meta-Learner [Mishra et al. 2018] Ne...

PFLD A Practical Facial Landmark Detector

人脸对齐

1. Introduction 人脸关键点检测器实际应用所需特征: 准确性好,高效,模型轻量级; 本文提出具有高精度的轻量级landmark检测模型,在移动设备上能达到实时的性能 2. Method 人脸关键点检测难点 局部变化: 现实场景中人脸的表情、光照、以及遮挡情况变化都很大 全局变化: 姿态和成像质量影响图像中人脸的表征,人脸全局结构的错误估计直接导致定...

End-to-End Object Detection with Transformers

目标检测算法

1. Introduction 近年来,Transformer 成为了深度学习领域非常受欢迎的一种架构,它依赖注意力机制,使得 AI 模型有选择地聚焦于输入的某些部分,因此推理更加高效。Transformer 已经广泛应用于序列数据的处理,尤其是在语言建模、机器翻译等自然语言处理领域。此外,它在语音识别、符号数学、强化学习等多个领域也有应用。(Transformer的介绍详...