改进卷积总结

Backbone

Posted by JY on July 31, 2020

(19.04) Res2Net: A New Multi-scale Backbone Architecture

代码地址:https://arxiv.org/pdf/1904.01169.pdf

代码地址:https://mmcheng.net/res2net

(19.04) OctaveConv: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution

论文地址: https://arxiv.org/abs/1904.05049

代码地址: https://github.com/terrychenism/OctaveConv

(19.04) ScaleNet:Data-Driven Neuron Allocation for Scale Aggregation Networks

论文地址: https://arxiv.org/abs/1904.09460

代码地址: https://github.com/Eli-YiLi/ScaleNet

(19.04) Data-Driven Neuron Allocation for Scale Aggregation Networks

论文地址:https://arxiv.org/pdf/1904.09460.pdf

代码地址:https://github.com/Eli-YiLi/ScaleNet

(19.07) MixConv: Mixed Depthwise Convolutional Kernels

论文地址:https://arxiv.org/pdf/1907.09595.pdf

代码地址:https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet/mixnet

(19.08) Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution

论文地址:https://arxiv.org/pdf/1904.05049.pdf

(19.09) ACNet: Strengthening the Kernel Skeletons for Powerful CNN via Asymmetric Convolution Blocks

论文地址:https://arxiv.org/pdf/1908.03930.pdf

(19.10) CondConv: Conditionally Parameterized Convolutions for Efficient Inference

论文地址:https://arxiv.org/pdf/1904.04971.pdf

代码地址:https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/condconv

(20.02) XSepConv: Extremely Separated Convolution

论文地址:https://arxiv.org/pdf/2002.12046.pdf

(20.03) Rethinking Depthwise Separable Convolutions: How Intra-Kernel Correlations Lead to Improved MobileNets

论文地址:https://arxiv.org/pdf/2003.13549.pdf

(20.03) Dynamic Convolution: Attention over Convolution Kernels

论文地址:https://arxiv.org/pdf/1912.03458.pdf

(20.04) MUXConv: Information Multiplexing in Convolutional Neural Networks

论文地址:https://arxiv.org/pdf/2003.13880.pdf

代码地址:https://github.com/ human-analysis/MUXConv

(20.04) Exploring self-attention for image recognition

论文地址:https://hszhao.github.io/papers/cvpr20_san.pdf

代码地址:https://github.com/hszhao/SAN

(20.04) DYNET: DYNAMIC CONVOLUTION FOR ACCELERATING CONVOLUTIONAL NEURAL NETWORKS

论文地址:https://arxiv.org/pdf/2004.10694.pdf

(20.05) Improving Convolutional Networks with Self-calibrated Convolutions

论文地址:http://mftp.mmcheng.net/Papers/20cvprSCNet.pdf

代码地址:https://github.com/MCG-NKU/SCNet

(20.06)Pyramidal Convolution:Rethinking Convolutional Neural Networks for Visual Recognition

论文地址:https://arxiv.org/pdf/2006.11538.pdf

代码地址:https://github.com/iduta/pyconv

(20.06) DO-Conv: Depthwise Over-parameterized Convolutional Layer

论文地址:https://arxiv.org/pdf/2006.12030.pdf

代码地址:https://github.com/yangyanli/DO-Conv